1 Table S1. List of all strains used in this study.

rhaB)568 hsdR514derivative of K-12 MG1655Δ9CPBW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4- 44 ΔkanRderivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9)HME71W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	Strain	Genotype*	Source / Description / Construction
call (1) used by F. Maisonneuve, et al. (2) abs known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) abs known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) abs known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (2) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Chr	E. coli K-12 MG1655	7 -	-
call (1) used by F. Maisonneuve, et al. (2) abs known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) abs known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) abs known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (cripsing From S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$5230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (3) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Christmenn, et al. (2) used by E. Maisonneuve, et al. (2) also known as \$6230 (abs from S. K. Chr	Λ1ΤΑ	K-12 MG1655 AchnB Accd+)	also known as SC31 (originally from S. K. Christensen
et al. (3); used by E. Maisonneuve, et al. (2) also known as SC31046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3)); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3); used by E. Maisonneuve, et al. (2) also known as SC301046 (originally from S. K. Christensen, et al. (3); used by E. Maisonneuve, et al. (4) also known as SC301046 (originally from S. Marchael allowed by E. Maisonneuve, et al. (4) also known as SC301046 (originally from S. Marchael al	22170	K 12 Moloss Echipo Nagy y	
ASTA	Δ2ΤΑ	K-12 MG1655 ΔmazF ΔchpB λ _{def} (+)	
Christensen, et al. (3)); used by E. Malsonneuve, et al. (2) also known as SC30146 (originally from S. K. Christensen, et al. (3)); used by E. Malsonneuve, et al. (2) also known as SC30146 (originally from S. K. Christensen, et al. (3)); used by E. Malsonneuve, et al. (2) a. ASTA K-12 MG1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf+) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf+) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf+) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Achp8 Arel8E Adin1-yafQ AyefM-yoe8 Auf4) 400(+) (x) Land G1655 Amazf Achp8 Arel8E Are			
(2)	Δ3TA	K-12 MG1655 Δ mazF Δ chpB Δ relBE λ _{def} (+)	1 = 1
Section Sec			
Christensen, et al. (3); used by E. Maisonneuve, et al. (2) a. STA K. 12 MG1655 AmazF & Achp8 AreiBE & Adin1-yafQ & yefM-yoe8 & Acqf+) \(\text{ p80(+)} \) a. & K-12 MG1655 AmazF & Achp8 AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 & AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 & AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) a. & K-12 MG1655 AmazF & Achp8 & AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf+) \(\text{ pa0(+)} \) b. & La MG1655 AmazF & Achp8 & AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf-) \(\text{ pa0(+)} \) a. & La MG1655 AmazF & Achp8 & AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf-) \(\text{ pa0(+)} \) a. & La MG1655 AmazF & Achp8 & AreiBE & Adin1-yafQ & yefM-yoe8 & Arigh8 & Acqf-) \(\text{ pa0(+)} \) b. & La MG1655 AmazF & Achp8 & AreiBE & Arigh8 & Acqf-) \(\text{ pa0(+)} \) a. & La MG1655 AmazF & Achp8 & AreiBE & Arigh8 & AreiBE & Arigh8 & AreiBE &	Λ4ΤΔ	K-12 MG1655 Amaze Achar ArelRE Adial-vafO And+)	, ,
12	21171	K 12 WO 1000 Elinati delipo Elino yaje naeji y	
Christensen, et al. (3);):used by E. Malsonneuwe, et al. (2)			
(2) (2)	Δ5ΤΑ	K-12 MG1655 Δ mazF Δ chpB Δ relBE Δ dinJ-yafQ Δ yefM-yoeB λ def(+) ϕ 80(+)	, , ,
Δ6TA			
ATTA	AGTA	V 12 MC1655 Amaze Achap Aralps Adial vast Avast Avas Ahiap A 1. (1)	1, ,
ΔΣΤΑ Κ.12 MG1655 AmazF Δchp8 ΔcelBE Δdinl-yafQ ΔyefM-yoe8 ΔhigBA Δprif-yabV Δyef1 y88(+) Δ8ΤΑ Κ.12 MG1655 Amaz Δchp8 ΔrelBE Δdinl-yafQ ΔyefM-yoe8 ΔhigBA Δprif-yhaV ΔygfNO Δygf	ДОТА		
Maisonneuve, et al. (2) Maisons Amar B AchpB ArelBE Adin1-yafQ AyefM-yoeB ΔhigBA Δprif-yhov VaygNO ΔmgRA A Δmf-yh 980f+yhov VaygNO ΔmgRA AbicAB Amf-yhov VaygNO ΔmgRA AbicAB Barg-yhov VaygNO ΔmgRA AbicAB Barg-YaygNo-yhov VaygNo AmgRa-YaygNo-yhov VaygNO ΔmgRA AbicAB Barg-YaygNo-yhov VaygNO ΔmgRA AbicAB AbicAB Barg-YaygNo-yhov VaygNO ΔmgRA AbicAB Barg-YaygNo-yhov Vayg	Δ7ΤΑ		
Maisonneuve, et al. (2)		yhaV λ _{def} (+) φ80(+)	
### #################################	Δ8ΤΑ		
who'v ΔyofNo DamasRA Aucht w80f+) w80fh(80)imm(N/+) Maisonneuve, et al. (2) Also known as EJM43; constructed and used by E. who'v ΔyofNo DamasRA ΔhicAB βωefle Edini-yafQ ΔyefM-yoeB AhigBA Aprif-yahv ΔyofNo DamasRA ΔhicAB βωefle Edini-yafQ ΔyefM-yoeB AhigBA Aprif-yahv ΔyofNo DamasRA ΔhicAB βωefle Edini-yafQ ΔyefM-yoeB AhigBA Aprif-yahv ΔyofNo DamasRA ΔhicAB βωefle Edini-yafQ QyefM-yoeB AbigBA Aprif-yahv:#RT ΔhigB::FRT ΔyofO:::FRT ΔyofO:::			
### #################################	Δ9ΤΑ		
whot ΔyafNO ΔmgsRA ΔhicλB Δacl+1 @80(+) φ80(θ) βmm(λ)(+) Maisonneuve, et al. (2)	Λ10ΤΔ		
Δ10 TA attB(+) K-12 MG1655 AmazF ΔchpB ΔrelBE ΔalinI-yofQ ΔyefM-yoeB ΔhigBA ΔprIF-yohQ ΔyagNO ΔmgsRA ΔhicAB φ80(+) φ80(+) φ80(1) φ80(1) mm(λ)(+) Δ5 TA K-12 MG1655 ΔhicAB::FRT ΔmgsR::FRT Δyg/O:::FRT ΔyhaV::FRT ΔhigB::FRT Algisonneuve, et al. (2) this study; also known as EIM46789; constructed and used by E. Maisonneuve, et al. (2) this study; also known as AHK250 ΔyefM-yoeB ΔdinI-yafQ ΔrelBE ΔchpBS ΔmazF L-12 MG1655 ΔhicAB::FRT ΔmgsR::FRT Δyg/O:::FRT ΔyhaV::FRT ΔhigB::FRT ΔygfM-yoeB ΔdinI-yafQ ΔrelBE ΔchpBS ΔmazF L-12 MG1655 famB λ(+) E-12 MG1655 famB λ(+) E-12 MG1655 β80(+) K-12 MG1655 famB::camR L-12	210171		
Solution Scripping Scripping Solution Scripping Scripping Solution Scripping Scripping Solution Scripping	Δ10 TA attB(+)		
Maisonneuve, et al. (2) Maisonneuve, et al. (2) Maisonneuve, et al. (2) this study, also known as AHK250 Maisonneuve, et al. (2) this study, also known as AHK250 Maisonneuve, et al. (4) K-12 MG1655 lamB λ(+) Maisonneuve, et al. (4) K-12 MG1655 lamB λ(+) Maisonneuve, et al. (4) Maisonneuve, et al. (4) Maisonneuve, et al. (4) Maisonneuve, et al. (4) Maisonneuve, et al. (5) Maisonneuve, et al. (6) Maisonneuve, et al. (6) Maisonneuve, et al. (7) Maisonneuve, et al. (7) Maisonneuve, et al. (7) Maisonneuve, et al. (8) Maisonneuve, et al. (9) Maisonneuve, et al. (7) Maisonneuve, et al. (8) Maisonneuve, et al. (9) Maison			
Δ10'TA K-12 MG1655 ΔhicAB::FRT ΔmgsR::FRT ΔyafO::FRT ΔhigB::FRT ΔyefM-yceB Δdin1-ycfQ ΔrelBE ΔchpBS ΔmazE λ(+) K-12 MG1655 lamB λ(+) K-12 MG1655 lamB λ(+) K-12 MG1655 lamB λ(+) K-12 MG1655 βamB λ(+) K-12 MG1655 βamB λ(+) K-12 MG1655 βamB λ(+) K-12 MG1655 βamB::camR K-12 MG1655 lamB::camR MA10TA attB(+) AttB(+) MA10TA attB(+)	Δ5'ΤΑ	K-12 MG1655 ΔhicAB::FRT ΔmqsR::FRT ΔyafO:::FRT ΔyhaV::FRT ΔhigB::FRT	
λ(+) K-12 MG1655 lamB λ(+) also called JMT1; single lambda lysogen of S. Semsey, et al. (4) φ80(+) K-12 MG1655 φ80(+) this study; also called AHK031; K-12 MG1655 wildtype lysogenized with φ80 from culture supernatant of Δ10TA attB(+) obtained from Sine Lo Svenningsen lamB K-12 MG1655 lamB::camR obtained from Sine Lo Svenningsen fhuA K-12 MG1655 fhuA::kanR fhuA K-12 MG1655 relA::kanR(251) spoT::: cat(207) λ(+) φ80(+) also called CF1693 (originally from H. Xiao, et al. (6)): used by E. Maisonneuve, et al. (7) as stock EJM48; no indication that the lambda prophage is defective this study; also called PDC47 relA spoT (new) K-12 MG1655 relA::FRT spoT::cat(207) this study; also called PDC47 lon K-12 MG1655 sulA::kanR Δpgk-ppx (old) K-12 MG1655 sulA::FRT Δlon this study; also called AHK173 Δppk-ppx (old) K-12 MG1655 ppk-ppx MK-12 MG1655 ppk-ppx (old) K-12 MG1655 ppk-ppx MK-12 MG1655 ppk-ppx	Λ10'TΛ	V 12 NG1655 AbicAB::EPT AmacB::EPT AvafO:::EPT Avba\/::EPT AbiaB::EPT	
λ(+) K-12 MG1655 lamB λ(+) Also called JMT1; single lambda lysogen of S. Semsey, et al. (4) Line study; also called AHK031; K-12 MG1655 wildtype lysogenized with φ80 from culture supernatant of Δ10TA att8(+) obtained from Sine Lo Svenningsen this study; fhuA::kanR allele transduced from the KEIO collection (5) also called CF1693 (originally from H. Xiao, et al. (6)) used by E. Maisonneuve, et al. (7) as stock EJM48; no indication that the lambda prophage is defective also called CF1693 (originally from H. Xiao, et al. (8)) used by E. Maisonneuve, et al. (7) as stock EJM48; no indication that the lambda prophage is defective al. (7) relA spoT (new) K-12 MG1655 lon::tetR Jour laboratory collection; used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR Constructed and used by E. Maisonneuve, et al. (7) sulA Δlon K-12 MG1655 sulA::kanR φ80(+) Appk-ppx (old) K-12 MG1655 Δppk ppx::kanR φ80(+) Appk-ppx (new) K-12 MG1655 Δppk-ppx Appk-ppx (new)	Δ10 1A		tilis study, also kilowii as Afik230
this study; also called AHK031; K-12 MG1655 wildtype lysogenized with φ80 from culture supernatant of Δ10TA attB(+) lamB	λ(+)		also called JMT1; single lambda lysogen of S. Semsey,
Iysogenized with φ80 from culture supernatant of Δ10TA attB(+)	,		
Δ10TA attB(+)	φ80(+)	K-12 MG1655 <i>φ80(+)</i>	The state of the s
IamB K-12 MG1655 IamB::camR obtained from Sine Lo Svenningsen fhuA K-12 MG1655 fhuA::kanR K-12 MG1655 fhuA::kanR this study; fhuA::kanR allele transduced from the KEIO collection (5) relA spoT (original) K-12 MG1655 relA::kanR(251) spoT::: cat(207) λ(+) φ80(+) relA spoT (new) K-12 MG1655 relA::kanR(251) spoT::: cat(207) λ(+) φ80(+) relA spoT (new) K-12 MG1655 relA::kanR(251) spoT::cat(207) lon K-12 MG1655 lon::tetR our laboratory collection; used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR constructed and used by E. Maisonneuve, et al. (7) sulA Δlon K-12 MG1655 sulA::FRT Δlon this study; also called AHK173 Δppk-ppx (old) K-12 MG1655 Δppk ppx::kanR φ80(+) (8), used by E. Maisonneuve, et al. (7) as EJM47 this study; also known as AHK062 BW25113 K-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD-rhaB)568 hsdR514 ΔPOCP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-4 derivative of K-12 MG1655 ΔPOCP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-4 derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;			1
fhuA K-12 MG1655 fhuA::kanR K-12 MG1655 fhuA::kanR(251) spoT::: cat(207) λ(+) φ80(+) also called CF1693 (originally from H. Xiao, et al. (6)); used by E. Maisonneuve, et al. (7) as stock EJM48; no indication that the lambda prophage is defective this study; also called PDC47 lon K-12 MG1655 lon::tetR our laboratory collection; used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR constructed and used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR constructed and used by E. Maisonneuve, et al. (7) this study; also called AHK173 Δρρk-ρρx (old) K-12 MG1655 Δρρk ρρx::kanR φ80(+) also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 this study; also known as AHK062 BW25113 K-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD-rhaB)568 hsdR514 ΔΘCP BW25113 Δrac ΔCP4-57 ΔCP5-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-44 ΔαnR HME71 W3110 galK _{NYLMSUAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; ε. coli k-12 stain carrying the temperature-sensitive λRED prophage;	lamR	K-12 MG1655 /amB::camB	
collection (5) relA spoT (original) K-12 MG1655 relA::kanR(251) spoT::: cat(207) λ(+) φ80(+) relA spoT (new) K-12 MG1655 relA::FRT spoT::cat(207) K-12 MG1655 relA::FRT spoT::cat(207) lon K-12 MG1655 lon::tetR our laboratory collection; used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR our laboratory collection; used by E. Maisonneuve, et al. (7) sulA Δlon K-12 MG1655 sulA::kanR constructed and used by E. Maisonneuve, et al. (7) sulA Δlon K-12 MG1655 sulA::FRT Δlon this study; also called AHK173 also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new) K-12 MG1655 Δppk ppx::kanR φ80(+) also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 this study; also known as AHK062 W-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD-rhaB)568 hsdR514 Δ9CP BW25113 K-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD-rhaB)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCP5-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-44 ΔkanR W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 was db y E. Maisonneuve, et al. (7) as took indication that the lambda prophage; constructed by X. Wang, et al. (9) our laboratory collection; E. coli κ-12 stain carrying the temperature-sensitive λRED prophage;			
Section Sec	fhuA	K-12 MG1655 fhuA::kanR	
used by E. Maisonneuve, et al. (7) as stock EJM48; no indication that the lambda prophage is defective relA spoT (new)K-12 MG1655 relA::FRT spoT::cat(207)this study; also called PDC47 lonK-12 MG1655 lon::tetRour laboratory collection; used by E. Maisonneuve, et al. (7) sulAK-12 MG1655 sulA::kanRconstructed and used by E. Maisonneuve, et al. (7) sulA ΔlonK-12 MG1655 sulA::FRT Δlonthis study; also called AHK173 Δppk-ppx (old)K-12 MG1655 Δppk ppx::kanR φ80(+)also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new)K-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ rph-1 Δ(rhaD-rhaB)568 hsdR514this study; also known as AHK062Δ9CPBW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-4A khanRderivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9)HME71W3110 galKtyr145UAG ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	relΔ snoT (original)	K-12 MG1655 rel4::kanR(251) snoT::: cat(207) \(\lambda(+)\)	
indication that the lambda prophage is defective relA spoT (new) K-12 MG1655 relA::FRT spoT::cat(207) K-12 MG1655 lon::tetR our laboratory collection; used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR constructed and used by E. Maisonneuve, et al. (7) sulA Δlon K-12 MG1655 sulA::FRT Δlon this study; also called AHK173 also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new) K-12 MG1655 Δppk ppx::kanR φ80(+) K-12 MG1655 Δppk-ppx K-12 MG1655 Γ Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ rph-1 Δ(rhaD-rhaB)568 hsdR514 Δ9CP BW25113 K-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ rph-1 Δ(rhaD-rhaB)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-Δ4 ΔkanR HME71 W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	rein spor (original)	κ 12 W01033 τεντκατικί231) 3μοτ εατί257) κ ίτ η φού τη	, , , , , , , , , , , , , , , , , , , ,
Ion K-12 MG1655 Ion::tetR our laboratory collection; used by E. Maisonneuve, et al. (7) sulA K-12 MG1655 sulA::kanR constructed and used by E. Maisonneuve, et al. (7) sulA Δlon K-12 MG1655 sulA::FRT Δlon this study; also called AHK173 Δppk-ppx (old) K-12 MG1655 Δppk ppx::kanR φ80(+) also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new) K-12 MG1655 Δppk-ppx this study; also known as AHK062 BW25113 K-12 MG1655 F Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ rph-1 Δ(rhaD-rhaB)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-44 ΔkanR HME71 W3110 galKtyr145UAG ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; commonly used lab strain derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;			indication that the lambda prophage is defective
al. (7) sulA K-12 MG1655 sulA::kanR K-12 MG1655 sulA::FRT Δlon K-12 MG1655 Δppk ppx::kanR φ80(+) Δppk-ppx (old) K-12 MG1655 Δppk ppx::kanR φ80(+) Lagrange (also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Lagrange (also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Lagrange (also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Lagrange (also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Lagrange (also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (9) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (9) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (9) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (9) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (9) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (9) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8)) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8) Lagrange (black called CF5802 (originally from A. Kuroda, et al. (8) Lagrange (black called CF5802 (ori	relA spoT (new)	K-12 MG1655 relA::FRT spoT::cat(207)	this study; also called PDC47
sulAK-12 MG1655 sulA::kanRconstructed and used by E. Maisonneuve, et al. (7) sulA ΔlonK-12 MG1655 sulA::FRT Δlonthis study; also called AHK173 Δppk-ppx (old)K-12 MG1655 Δppk ppx::kanR φ80(+)also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new)K-12 MG1655 Δppk-ppxthis study; also known as AHK062BW25113K-12 MG1655 F· Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD-rhaB)568 hsdR514our laboratory collection; commonly used lab strain derivative of K-12 MG1655Δ9CPBW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-44 ΔkanRderivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9)HME71W3110 galKtyr145UAG ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	lon	K-12 MG1655 lon::tetR	our laboratory collection; used by E. Maisonneuve, et
 sulA Δlon K-12 MG1655 sulA::FRT Δlon this study; also called AHK173 Δppk-ppx (old) K-12 MG1655 Δppk ppx::kanR φ80(+) also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new) K-12 MG1655 Δppk-ppx K-12 MG1655 F· Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD-ariab)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-44 ΔkanR HME71 W3110 galK_{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 was this study; also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 derivative; of K-12 MG1655 derivative of K-12 MG1655 derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage; 			
Δ <i>ppk-ppx</i> (old) K-12 MG1655 Δ <i>ppk ppx::kanR</i> φ80(+) also called CF5802 (originally from A. Kuroda, et al. (8)), used by E. Maisonneuve, et al. (7) as EJM47 Δ <i>ppk-ppx</i> (new) K-12 MG1655 Δ <i>ppk-ppx</i> K-12 MG1655 F· Δ(<i>araD-araB</i>)567 Δ <i>lacZ4787</i> (::rrnB-3) λ· rph-1 Δ(rhaD-rhaB)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-44 ΔkanR HME71 W3110 <i>galK_{tyr145UAG}</i> Δ <i>lacU169</i> [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; commonly used lab strain derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) our laboratory collection; <i>E. coli</i> K-12 stain carrying the temperature-sensitive λRED prophage;	sulA	K-12 MG1655 sulA::kanR	constructed and used by E. Maisonneuve, et al. (7)
(8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new) K-12 MG1655 Δppk-ppx K-12 MG1655 F· Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD- rhaB)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4- 44 ΔkanR HME71 W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 was expected by E. Maisonneuve, et al. (7) as EJM47 this study; also known as AHK062 our laboratory collection; commonly used lab strain derivative of K-12 MG1655 derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	sulA ∆lon	K-12 MG1655 sulA::FRT Δlon	this study; also called AHK173
(8)), used by E. Maisonneuve, et al. (7) as EJM47 Δppk-ppx (new) K-12 MG1655 Δppk-ppx K-12 MG1655 F· Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ· rph-1 Δ(rhaD- rhaB)568 hsdR514 Δ9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4- 44 ΔkanR HME71 W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 was expected by E. Maisonneuve, et al. (7) as EJM47 this study; also known as AHK062 our laboratory collection; commonly used lab strain derivative of K-12 MG1655 derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	Δ <i>ppk-ppx</i> (old)	K-12 MG1655 Δppk ppx::kanR φ80(+)	also called CF5802 (originally from A. Kuroda, et al.
BW25113 K-12 MG1655 F- Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ- rph-1 Δ(rhaD-araB)568 hsdR514 our laboratory collection; commonly used lab strain derivative of K-12 MG1655 Δ9CP BW25113 Δrac ΔCP4-57 ΔCP5-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4-derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) HME71 W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;			(8)), used by E. Maisonneuve, et al. (7) as EJM47
rhaB)568 hsdR514derivative of K-12 MG1655Δ9CPBW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4- 44 ΔkanRderivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9)HME71W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	Δ <i>ppk-ppx</i> (new)	K-12 MG1655 Δ <i>ppk-ppx</i>	this study; also known as AHK062
A9CP BW25113 Δrac ΔCP4-57 ΔCPS-53 ΔDLP12 ΔQin Δe14 ΔCP4-6 ΔCPZ-55ΔCP4- derivative of BW25113 lacking all nine cryptic prophages; constructed by X. Wang, et al. (9) W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 w3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;	BW25113	K-12 MG1655 F ⁻ Δ(araD-araB)567 ΔlacZ4787(::rrnB-3) λ ⁻ rph-1 Δ(rhaD-	our laboratory collection; commonly used lab strain
44 ΔkanR prophages; constructed by X. Wang, et al. (9) HME71 W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] Δ(srlA-recA)301::Tn10 our laboratory collection; E. coli K-12 stain carrying the temperature-sensitive λRED prophage;		,	
HME71 W3110 $galK_{tyr145UAG}$ $\Delta lacU169$ [λ cl857 $\Delta (cro-bioA)$] $\Delta (srlA-recA)301::Tn10$ our laboratory collection; $E.~coli$ K-12 stain carrying the temperature-sensitive λ RED prophage;	Δ9CP	-	
the temperature-sensitive λRED prophage;	UNAE71		
	I IIVIE / I	VV 3110 guinty/145UAG ΔIUCO 103 [Λ ClO3/ Δ(ClO-DIOA)] Δ(SIIA-IECA)301::IN10	
			constructed by J. A. Sawitzke, et al. (10)

MAS889	W3110 galK _{tyr145UAG} ΔlacU169 [λ cl857 Δ(cro-bioA)] srl* rec* tet ^S	this study; derivative of HME71 cured for the $\Delta(srlA-recA)$ 301:: Tn 10) insertion
MAS242	K-12 MG1655 $\Delta(proAB-lac)$ cys $Ilv(val^R)$ str ^R thi mini-Tn10 close to $galE$	our laboratory collection
MAS902	W3110 $galK_{tyr145UAG}$ $\Delta lacU169$ [λ cl857 $\Delta (cro-bioA)$] srl^{+} rec^{+} tet^{S} $tn10$ close to $galE$	this study; <i>tn10</i> close to <i>galE</i> transduced from MAS242 into MAS889
Bacteriophages		
T4D	wildtype strain	obtained from Kenneth Kreutzer
φ80 <i>vir</i>	obligately lytic mutant of φ80	obtained from Sine Lo Svenningsen
lambda <i>cl_{b221}</i>	obligately lytic mutant of lambda (cl mutant)	our laboratory collection

^{*} newly discovered genotypic features of previously published strains are highlighted in bold font; the defective lambda

4 References cited in Table S1

- 5 1. Christensen SK, Pedersen K, Hansen FG, Gerdes K. 2003. Toxin-antitoxin loci as stress-response-
- 6 elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol
- 7 **332:**809-819.

1

3

- 8 2. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. 2011. Bacterial persistence by RNA
- 9 endonucleases. Proc Natl Acad Sci U S A **108**:13206-13211.
- 10 3. Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. 2004.
- Overproduction of the Lon protease triggers inhibition of translation in *Escherichia coli*: involvement of
- the *yefM-yoeB* toxin-antitoxin system. Mol Microbiol **51:**1705-1717.
- 4. **Semsey S, Campion C, Mohamed A, Svenningsen SL.** 2015. How long can bacteriophage λ change its
- mind? Bacteriophage **5**:e1012930.
- 15 5. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori
- 16 H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio
- 17 collection. Mol Syst Biol **2:**2006 0008.
- 18 6. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3',5'-
- bispyrophosphate synthetic activity of *relA* null mutants can be eliminated by *spoT* null mutations. J Biol
- 20 Chem **266:**5980-5990.

² prophage of some strains is indicated as λ_{def}

- Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. (p)ppGpp controls bacterial persistence by
 stochastic induction of toxin-antitoxin activity. Cell 154:1140-1150.
- 8. **Kuroda A, Murphy H, Cashel M, Kornberg A.** 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in *Escherichia coli*. J Biol Chem **272**:21240-21243.
- Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK. 2010. Cryptic prophages help
 bacteria cope with adverse environments. Nat Commun 1:147.
- 7 10. **Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL.** 2007. Recombineering: *in vivo* genetic engineering in *E. coli, S. enterica*, and beyond. Methods Enzymol **421**:171-199.

9